
8
»

Reference Model
Standardization

Database Architecture Framework Task Group (DAFTG)

of the ANSI/X3/SPARC Database System Study Group

I

Members:

Thomas Burns, The MITRE Corporation

Elizabeth Fong, National Bureau of Standrds

David Jefferson, National Bureau of Standards

Richard Knox, Computer Science Corporation

Leo Mark, University of Maryland

Christopher Reedy, Planning Research Corporation

Louis Reich, General Electric Information Services Co.

Nick Roussopoulos, University of Maryland

Walter Truszkowski, NASA Goddard Space Flight Center

May 1985

U S. DEPARTMENT OF COMMERCE

*10 . 85-3173

[1985

NATIONAL BUREAU OF STANDARDS

NBSIR 85-3173

REFERENCE MODEL FOR DBMS
STANDARDIZATION

Database Architecture Framework Task Group (DAFTG)
of the ANS1/X3/SPARC Database System Study Group

Members:

Thomas Burns, The MITRE Corporation

Elizabeth Fong, National Bureau of Standrds

David Jefferson, National Bureau of Standards

Richard Knox, Computer Science Corporation

Leo Mark, University of Maryland

Christopher Reedy, Planning Research Corporation

Louis Reich, General Electric Information Services Co.

Nick Roussopoulos, University of Maryland
Walter Truszkowski, NASA Goddard Space Flight Center

May 1985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Enwst Ambler. Dkactor

PREFACE

This is the final report produced by the Database Ar-
chitecture Framework Task Group (DAFTG) of the
ANSI /X3/ SPARC Database Systems Study Group (DBSSG). DAFTG
was formed in November 1983 by David Jefferson and Elizabeth
Fong, and met regularly once a month for over a year. A
draft working paper entitled "Reference Model for DBMS Stan-
dardization" was produced by the members of DAFTG. This
working paper was approved by DBSSG, and then presented to
SPARC in November 1984. SPARC recommended a release of this
working paper to all ANSI committee chairs for review and
comment. This version of the "Reference Model for DBMS
Standardization" has been edited and revised by David
Jefferson and Elizabeth Fong of the National Bureau of Stan-
dards .

The technical work represents the careful distillation
of direct contributions by the members of DAFTG; the opin-
ions and ideas expressed here are not necessarily endorsed
by the Institute for Computer Sciences and Technology of the
National Bureau of Standards.

TABLE OF CONTENTS

Page

1 . INTRODUCTION 2

1.1 Objectives for a DBMS Reference Model 2

1.2 Benefits Expected from DBMS Standardization .. 3

1 . 3 Review of Efforts Toward DBMS Reference Models 4

1.4 Requirements for a Reference Model Definition 5

1 . 5 Intended Audience 5

1.6 Scope of the RM 6

1.7 Review of Approaches to RM definition 6

1.8 Structure of the Report 7

2. A REVIEW OF THE ANSI /SPARC DBMS FRAMEWORK 9

2.1 Architecture 9

2.2 Levels of Data Representation 9

2.3 Levels of Data Description 11

2.4 A Model of Data for a DBMS Reference Model ... 13

3. THE DBMS AND ITS ENVIRONMENT 15

3 . 1 User Roles 17

3.2 Application Programs and Application Language
Processors 18

3.2.1 Interfaces Between Processors and the DBMS 18
3.2.2 Types and Levels of Commands 20
3.2.3 Conclusions About Interfaces to

Applications 20

3.3 The Data Dictionary System 20

3.3.1 Content of the DDS 21
3.3.2 Interfaces to Users 22
3.3.3 Interfaces to the DBMS 23

-iii-

3.3.4

Conclusions about Interfaces for DDS 24

3.4 DBMS Related Tools 25

3.4.1 Application Development Tools 25
3.4.2 Database Design Tools 26
3.4.3 Decision Support Tools 26
3.4.4 Performance Tuning Tools 27
3.4.5 Maintenance Support Utilities 27
3.4.6 Data Entry Software 27
3.4.7 Download/Upload Utilities 27
3.4.8 Support of Multiple Data Models 27
3.4.9 Conclusions about DBMS Related Tools 27

3.5 The Operating and File Management System 28

3.5.1 Processor Control 28
3.5.2 Memory Control 29
3.5.3 I/O Control and Buffer Management 29
3.5.4 Operating System Services 29
3.5.5 Secondary Storage Management 30
3.5.6 Other File Management Services 30
3.5.7 Conclusions about the OS and File

Management 31

3.6 Protocols and Distributed Systems 31

3.6.1 Database Functions and the OSI Model 31
3.6.2 Distributed DB Capabilities and OS 34
3.6.3 Conclusions about Interfaces for DDBMS 37

4. THE REFERENCE MODEL 38

4.1 Data Analysis 39

4.1.1 The Point-of-View Dimension 42
4.1.2 The Intension-Extension Dimension 43
4.1.3 Data Classification 47

4.2 Function Analysis 49

4.2.1 Basic DMCS Functions - Intension-Extension
Dimension 49

4.2.2 Basic DMCS Functions - Point-of-View
Dimension 52

4.2.3 Compound DMCS Functions 54

4.3 Data Management Tools 55

4.4 Operating System 56

-iv-

5. CONCLUSIONS 58

5.1 Recommendation for DL Standardization 59

5.2 Recommendation for i-DL Standardization 59

6. REFERENCES 60

7. GLOSSARY 66

-v-

I

REFERENCE MODEL FOR DBMS STANDARDIZATION

This report proposes a Reference Model (RM)
for database management system (DBMS) standardiza-
tion. A Reference Model is a conceptual framework
whose purpose is to divide standardization work
into manageable pieces and to show at a general
level how these pieces are related with each oth-
er. The proposed RM comprises a Data Mapping Con-
trol System (DMCS) that retrieves and stores ap-
plication data, application schemas, and data dic-
tionary schemas. This DMCS is bounded by two in-
terfaces: the Data Language (DL) interface which
defines the services offered by the DMCS to vari-
ous Data Management Tools (DMT), and the internal
Data Language (i-DL) interface which defines the
services required by the DMCS from the host
operating system. This report suggests two candi-
dates for standardization: the DL and the i-DL.

Key Words: ANSI/SPARC; data description; data
dictionary; database management system; meta data;
schema; standards; reference model.

- 1 -

1 . INTRODUCTION

This report proposes a Reference Model (RM) for data-
base management system (DBMS) standardization. A RM is a
conceptual framework whose purpose is to divide standardiza-
tion work into manageable pieces and to show at a general
level how these pieces are related with each other. A
well-known example of a reference model is the International
Organization for Standardization (ISO) reference model of
Open Systems Interconnection (OSI) layered architecture [ISO
84] . This reference model has become a major tool for the
study and organization of standards activities relating to
interprocess communications.

1.1 Objectives for a DBMS Reference Model

Some of the objectives of a DBMS RM are:

o To serve as a tool for the development and coordina-
tion of standards in the DBMS area. A RM identifies
important interfaces, which can then be standardized
by appropriate technical committees.

o To describe interactions between the DBMS and other
software components in an information system, such as
data dictionary systems, report writers, etc. This,
in turn, might influence DBMS vendors to provide
plug-compatible components as suggested in [CCA82a3

.

o To facilitate the training of personnel by providing
a common framework for describing DBMS.

o To allow classification of vendor implementations.

o To aid users in reviewing, changing and introducing
DBMSs into an organization.

-2 -

1.2 Benefits Expected from DBMS Standardization

Although the reference model itself is not a proposal
for a standard, it provides a basis for considering future
standards effort. Important benefits may be achieved from
DBMS standardization by users, purchasers, computer service
management and staff, vendors, DBMS designers, teachers and
students. The potential benefits that can be gained from
the standardization of the DBMS are discussed below.

o Mobility of applications and portability among
hardware

.

If DBMS standards are adopted by many manufacturers
and vendors, users will be able to develop applica-
tions or packages for use on different computers.

o Improved staff productivity and reduced training
costs

.

The costs involved in staff education are quite high.
It is clear that, if DBMS standardization is
achieved, the costs associated with re-education of
DBMS users and programmers and the temporary loss of
productivity linked with staff turnover will be re-
duced .

o Simplication of DBMS selection and evaluation.

At present, the DBMS selection and evaluation process
is both complex and very expensive and, consequently,
is often conducted only superficially. It is clear
that the adoption of a limited number of standards
will make the evaluation process simpler.

o Reduced costs.

The adherence to standards by vendors will tend to
lower the cost of the product in the community.

o Increase feasibility of data interchange between
DBMSs.

The need for data generated from one DBMS to be load
ed into another DBMS is quite clear. The introduc
tion of DBMS standards will make data interchange
more feasible.

- 3 -

1.3 Review of Efforts Toward DBMS Reference
Models

There are a large number of DBMSs in the marketplace
and, accelerated by the microcomputer boom, this number is
now increasing more quickly than ever. It is therefore ap-
propriate to investigate the possibility of defining ade-
quate standards for DBMSs.

In fact, the concern about DBMS standardization already
existed in the sixties, as the CODASYL-DBTG work [CODA69,
CODA73 , CODA78] may well be considered as an attempt to en-
courage a standard approach to database management. Since
then, the standardization of DBMS concepts and principles
has evolved considerably. A major accomplishment was the
first ANSI /SPARC DBMS report which introduced the concept of
a framework of three schemas: internal, conceptual, and
external [ANSI78]

.

In 1979 the National Bureau of Standards contracted
with the Computer Corporation of America to develop an ar-
chitecture for DBMS standards. A series of reports [CCA 80,
CCA82a , CCA82b , CCA82C , CCA84a, CCA84b, CCA84c, CCA84d,
CCA84e , CCA84f , CCA84g] proposed a "Strawman" architecture
which classifies DBMS-related components into both internal
and external components and proposes for these components a
family structure that supports the integration of DBMS stan-
dards for multiple data models. The report is valuable in
that it identifies many components and many interfaces and
summarizes how these fit together. The aim is to permit
buyers of DBMS to mix and match their software to the same
extent as buyers already do with hardware from different
vendors

.

In 1982, the Database Architecture Framework Task Group
(DAFTG) of the ANSI /X3/ SPARC Database System Study Group
(DBSSG) , a precursor to the current group, produced a paper
proposing an architecture that incorporates a distributed
environment [DAFT82] . This architectural framework supports
multiple data models and families of database standards.

A paper on the issue of reference models by Bachman and
Ross [BACH82] entitled "Toward a More Complete Reference
Model of Computer-based Information Systems" suggests a very
ambitious approach and proposes an interaction between their
DBMS reference model and the OSI reference model.

-4 -

The past few years have been very productive for DBMS
standardization. Surveys of DBMS-related standardization
activities can be found in [OLLE83] and [BRAN84] . Such
widespread activity is essential for a successful DBMS stan-
dardization effort.

1.4 Requirements for a Reference Model Definition

The requirements for a stable reference model (RM) de-
finition are as follows:

o Computer technology is advancing rapidly. The RM de-
finition must be able to accommodate new developments
such as distributed DBMSs, data dictionary systems,
database machines, micro DBMSs, etc.

o One of the drawbacks of the previous ANSI /SPARC
framework [ANSI78] is that it consists of too many
interfaces. The RM definition must simplify the
structure of the DBMS framework.

o There are many different data models emerging in the
DBMS world. The RM definition must create a mechan-
ism to unify different data models.

o New approaches to reference model structuring have
appeared, such as the Open Systems Interconnection
(OSI) seven layer model. This OSI model has become a
major tool for the study and organization of stan-
dards activities relating to interprocess communica-
tions. The RM definition for DBMS must be compatible
with the OSI RM in its approach to distributed data-
bases .

1 . 5 Intended Audience

The primary audience for the RM consists of the ISO and
ANSI experts involved in DBMS standardization. This report
is directed to these experts as well as to others in order
to invite maximum input for further work.

- 5 -

1.6 Scope of the RM

Defining the scope of the RM deserves an accurate dis-
cussion. The approach is based on the work of ISO/TC 97/SC
5/WG 3 as described in [GRIE82] . The DBMS is considered a
part of a whole, called the Information System (IS), that
offers all the functions related to the usage of a computer
within an organization. The IS has a set of interfaces in-
tended for "end-users" (users whose concern is the organiza-
tion, rather than the IS) and another set of interfaces in-
tended for the "technical staff" (users whose concern is the
design, building, maintenance and evaluation of the IS).
Within the IS, there are functions that may clearly be iden-
tified as non-DBMS, functions that may be identified as
DBMS-related, and others whose class is unclear (undecided
for the moment).

1.7 Review of Approaches to RM definition

The methods and tools used to design the RM should be
consistent with the purpose and scope assigned to the RM.
There are several approaches described in [KANG83] and
briefly discussed here:

The first approach is based on the components which can
be identified within a DBMS. The focus is on decomposing
the DBMS (a huge piece of software) down into smaller parts
such that each part is simpler to understand than the whole
thing . Each part can be acquired from a number of vendors
(plug compatibility), while each part still yields a defined
functionality. The overall capabilities of the DBMS can be
ensured through proper interoperation of its parts. The
CCA/NBS and DAFTG documents are examples of the use of this
method

.

The second approach is based on the functions provided
by the DBMS to its external users. The focus is on deter-
mining what functions a DBMS performs with respect to the
users of the DBMS at any level (data administration, appli-
cation programming, system tuning, operational control,
etc.). The users belong to the environment of the DBMS and
may be humans as well as software or hardware products. The
resulting reference model is specified by a list of func-
tions the DBMS is expected to provide. This list should be
organized into meaningful groupings corresponding to inter-
faces between the DBMS and specific user types. The layered
approach used by ISO for building a reference model for

-6 -

Open System Interconnection belongs to the class of func-
tional approaches.

The third approach is the data approach [JEFF83] . This
approach specifies the collection of descriptions of the
structure and usage of the data manipulated by the DBMS. A
framework for the architecture can be identified based on
the different points of view of data description, and the
functional modules that apply to those points of view. For
example, the ANSI /SPARC three-schema architecture identifies
the conceptual (enterprise-oriented), external
(application-oriented), and internal (storage-oriented)
points of view [ANSI78] . Functional modules for this archi-
tecture include an integrity analyzer at the conceptual
point of view, data structure translators at the external
point of view, and storage structure optimizers at the
internal point of view.

It should be noted that the functional approach is
probably performed as a first step within the component ap-
proach. The component approach is clearly preferable when
the goal of the DBMS reference model is to aid in the design
of a DBMS or in the understanding of how a DBMS performs its
functions. The data approach seems more appropriate to
standardization purposes; however, the data approach needs
to be integrated with the functional approach. Therefore,
a combination of the data and functional approach is pro-
posed for the initial definition of the RM. Detailed work
can then adopt the component approach, in order to ensure
plus compatibility of various pieces provided by different
vendors

.

1.8 Structure of the Report

Chapter 1 provides a description of a reference model

.

The objectives and requirements of defining the RM for DBMS
standardization are stated.

Chapter 2 gives a brief overview of the first
ANSI/SPARC DBMS framework, and raises some major questions
which are left unanswered in this framework.

Chapter 3 discusses the DBMS and its environment . The
emphasis is on current implementations of DBMS and identifi-
cation of problems which may be solved by clearly separating
interfaces and functions.

-7 -

Chapter 4 presents the RM in detail. This portion of
the report is intended for readers familiar with DBMS con-
cepts. The terminology used is explained in the Appendix.

Chapter 5 proposes candidates for standardization.

- 8 -

2. A REVIEW OF THE ANSI /SPARC DBMS FRAMEWORK

The proposed RM is based on the first ANSI /SPARC DBMS
framework and, therefore, a review of the ANSI /SPARC frame-
work is briefly presented below.

2.1 Architecture

The ANSI /SPARC DBMS framework describes a database
management system in terms of interfaces, personal roles,
processing functions, and information flow within the sys-
tem. The framework emphasizes that standardization should
deal with interfaces within a DBMS, not how the various com-
ponents of such a system should function. An interface is
described in terms of who or what uses it, what is to be
specified at the interface, the purpose of the interface,
and how the system uses the information which passes across
the interface.

2.2 Levels of Data Representation

The ANSI /SPARC Framework proposes a three-level " coex-
istence" architecture for DBMSs, which is presented in
greatly simplified form by Figure 2.1. Under this approach,
the database is considered as containing data about a
selected part of the real world. This part of the real
world is called an enterprise. The conceptual schema serves
as an information model of the enterprise which the database
is to serve, and as a control point for further database
development. Information of interest to the enterprise is
described in terms of relevant entities, their properties,
and their interrelationships, together with various integri-
ty, security, and other constraints. The conceptual schema
must be based on a data model, that is, a formal collection
of rules governing data structures and the operations on
them

.

What data is actually stored in the database, and how
that data is stored, e.g., in flat files, in a hierarch, in
a network, or in inverted files, is specified in the inter
nal schema. The internal schema is intended to reflect ef-
ficiency considerations by describing the structure of the
database in terms of an abstract model of storage. Data
representations, access paths, etc. are defined at this lev
el

.

- 9 -

FIGURE 2.1 - LOGICAL STRUCTURE OF A 3-LEVEL DATABASE

- 10 -

The external level of description contains any number
of external views of the database, each of which is a col-
lection of data objects representing the entities, proper-
ties, and relationships in the enterprise which are of in-
terest to a specific application. Each external view of the
database is associated with an external schema describing
the objects in the external view, as they are to be present-
ed to that application.

The main purpose for having data description at these
three levels is to enable the conceptual schema to act as a
relatively stable description of the enterprise model
without concern either for efficiency considerations or ap-
plication data requirements. This results in databases
which are flexible and adaptable to changes in the way users
view the data and in the way data is stored. This flexibil-
ity and adaptability is usually called data independence.

2.3 Levels of Data Description

A partial subset of the ANSI /SPARC framework is illus-
trated in Figure 2.2. The framework supporting databases
with a three-schema logical structure consists of two parts,
the upper part for defining the database and the lower part
for using it. The definition part is facilitated via a data
collection called META DATA which is illustrated in the Fig-
ure 2.2 as a triangle. The user data, as illustrated in
Figure 2.2 via a rectangle, is perceived as stored data and
is specified in the internal schema.

A database is defined by first defining a conceptual
schema using the interface 1. The conceptual schema is
"checked" by the conceptual schema processor and stored via
the object format interface 2 in the meta database. The
conceptual schema processor is capable of "displaying" in-
formation about the conceptual schema defined through in-
terface 3. Using this information, external and internal
schemas can be defined through interfaces 4 and 13, respec-
tively; they can be "checked" by the external and internal
schema processors, respectively; and they can be stored in
the meta database through interfaces 5 and 14, respectively.

- 11 -

l/J€

>i

""

cfe/*

'**£'<*?

i \

t

FIGURE 2.2 - ANSI/SPARC DBMS FRAMEWORK

- 12 -

The user can now manipulate data through the external
schema data manipulation language (DHL.)., and interface 12. A
user request is executed by the conceptual /external

,

internal/conceptual, and storage/internal transformers,
which request meta data through the object format interfaces
38, 36, and 34, respectively. The transformers change user
requests in interface 12 to requests in interfaces 31, 30,
and 21, respectively; and transform the results back again.
Interfaces 31, 30 and 21 are DMLs at the conceptual, inter-
nal and storage levels, respectively. If a program acts on
the user's behalf, this transformation between levels can be
avoided at run-time, if the program is translated into ob-
ject format 21 at compile-time.

Some of the major questions left unanswered in the
ANSI /SPARC framework are related to meta data management.

o Are meta data different from data?

o Are meta data and data stored separately?

o Are meta data and data described in terms of dif-
ferent data models?

o Is there a schema for meta data — a meta-schema?

o Are there external and internal meta-schemas?

o Are the interfaces used to retrieve and change meta
data different from those used to retrieve and change
data?

o Can a schema be changed on-line?

o Can a changed schema be automatically reflected in
the data?

2.4 A Model of Data for a DBMS Reference Model

Based on the ANSI/SPARC DBMS framework, it is recog
nized that any meta data or schema is itself a collection of
data which can be considered as a database with an associat
ed description. This recursive nature of data descriptions
leads to a hierarchy of different levels of schemas of which
the highest level of schema cannot be explicitly described
and so has to be embedded in the software. The self
describing nature of the data description is used to extend

- 13 -

the ANSI /SPARC three-schema architecture of data representa-
tion, conceptual, external,. .and internal, and is used in the
development of the DBMS RM. A detailed disoussion on the
data model for the DBMS RM is in Chapter 4.

- 14 -

3. THE DBMS AND ITS ENVIRONMENT

Description of a DBMS requires specification of its
boundaries and the components or subsystems that interact
with it. An interface is a language accepted by two (or
more) processes for describing data communicated between
them. Two classes of interfaces are identified:

o Interfaces enabling human users and/or processors to
specify their requests for data manipulation to the
DBMS. Examples from this class of interfaces include
query languages and application programs, which ac-
cept commands from a human user and translate them
into commands to data manipulation services of the
DBMS.

o Interfaces enabling the use of services of proces-
sors that support the functioning of a DBMS. Exam-
ples from this class of interfaces are operating sys-
tem and file management services which host the DBMS

.

Figure 3.1 illustrates the DBMS and its environment.
The DBMS is logically interfaced to the various application
support processors. Some of these processors include appli-
cation language processors, distributed systems, data dic-
tionary systems, and related tools. The DBMS is also logi-
cally interfaced to the operating system and file management
system. It should be noted that, in existing DBMS products,
these interfaces are rarely explicit: some involve a close
coupling between facilities and the DBMS, while some of the
facilities can be regarded as external to the DBMS. Even
more difficult to distinguish is the interface between the
operating system functions and the DBMS. Some implementors
of DBMSs have chosen, for performance reasons, to implement
these services within the DBMS rather than to use the ser-
vices that are provided by the operating and file management
system.

- 15 -

FIGURE 3. 1 - DBMS AND ITS ENVIRONMENT

- 16 -

Section 3.1 presents a discussion of the human user
roles. Human users either use the DBMS directly or go
through a variety of processors to request the services of
the DBMS. These processors and their interfaces to the DBMS
are described in Section 3.2. Data dictionaries are dis-
cussed in Section 3.3, and other DBMS tools in Section 3.4.
Section 3.5 describes the operating and file management
system which supports the functioning of a DBMS. The chapter
ends with a discussion of protocols and distributed systems.
The emphasis throughout the chapter is on the environment
which presently exists, and how it creates complexity or
inefficiency which could be eliminated by improved inter-
faces in the future.

3 . 1 User Roles

The ANSI /SPARC DBMS framework defines three types of
roles: enterprise administrator, database administrator, and
application administrators. The job of the enterprise ad-
ministrator is to determine the information needs of the en-
terprise which the database is to serve. Once the enter-
prise administrator understands the information needs of the
organization and has documented the uses, flow, and accessi-
bility of the information, a conceptual schema is prepared.
The database administrator is responsible for specifying the
internal schemas, that is, the physical description of the
information represented by the conceptual schema. To do
this, the database administrator must resolve various ques-
tions about usage requirements, data sources, total system
performance requirements, security and integrity require-
ments, and implementation issues. The various application
programs using the organization's database are under the
control of application administrators. Together with the
enterprise administrator, the application administrators
construct external schemas describing the Objects of in-
terest for each specific class of applications. Each exter-
nal schema may be used by one or more application programs.

As DBMS products proliferate, they offer enhanced
functionality and provide friendlier interfaces. A variety
of forms of user-friendly interfaces are offered so that
various end-users can request services of the DBMS. The no-
vice end-user has little or no experience with data process-
ing technology but has a need for data processing.
Parametric end-users, often clerical personnel, invoke ap
plication programs by means of a few key-strokes or simple
commands. Most end-users are professionals trained in a
discipline other than computer science, e.g., engineering,
chemistry, or business management, and use database

- 17 -

management software to perform their tasks. These profes-
sionals are typically called subject matter end-users.

There are many technical support personnel who need to
communicate with the DBMS to perform certain tasks. Exam-
ples include data access security managers who authorize
security privileges to other users, and data quality spe-
cialists who specify the integrity rules to be checked at
certain combinations of events.

A modern DBMS typically offers some or all of these in-
terfaces tailored toward the different types of end-user
roles. These different interfaces are implemented via spe-
cial purpose processors, some of which are described below.

3.2 Application Programs and Application Language
Processors

An application program accepts requests either from a
human or from another program and translates the requests
into data manipulation language commands which the DBMS can
execute . Characteristics of the interface between the DBMS
and application programs can have major effects on the
ease of developing and maintaining application programs,
on the type and extent of optimization that can be done
by the DBMS or by other processors, on the difficulty of
developing and maintaining DBMS standards, and on the dif-
ficulty of developing products conforming to the stan-
dards. These effects also apply to the interface between
the DBMS and application language processors such as
query processors, report writers, and graphics sys-
tems . Such general-purpose software systems are really
applications as far as the DBMS is concerned, though
their performance requirements may be very high.

3^2^1_Int£rf&Q££_Bgtw££n Processors and the DBMS.

There are three alternative syntactic forms for
implementing these interfaces: explicit procedure calls,
native syntax, and implicit procedure calls.

Explicit Procedure Calls - The first alternative is for
the application program to call (invoke) a separate pro-
cedure (subroutine) written in the data manipulation
language (DML) and compiled by a DML compiler. The inter-
face between the host language program and the DML procedure
is realized by means of parameters explicitly passed
between them. This alternative is the simplest, both for
the standards community and for the implementor, since the

- 18 -

host language and the DML can be developed independently
except for shared data types (or procedures for data type
transformation) and call mechanisms. A possible disadvantage
of this alternative, if the calls involve single records,
may be reduced opportunities for optimization, since nei-
ther the host language optimizer nor the DBMS optimizer has
knowledge or control over a large set of database opera-
tions. Adequate optimization can generally be per-
formed if a complete selection clause is made available
to the DBMS. Another disadvantage may be reduced clar-
ity and maintainability of programs, since the DML part
of each program is separated from the host language part

,

thus the user must generate a number of superfluous
names for subroutines and interface parameters.

Native Syntax - The second alternative is for the host
language to include all DML statements. One compiler
then does all of the language processing. This is
relatively complex for the standards community and im-
plementors, since the host language and DML must be
developed and maintained together, and the approach
will differ for each host language. The advantages are
that global optimization is feasible, and all of the
program statements appear together and can be maintained
together. An interactive compiler can detect errors
in any of the statements. Optimization may be per-
formed by the compiler, in which case the interaction
between conventional programming language and DML state-
ments may be further optimized; however, the importance of
this is likely to be minor compared to optimization per-
formed by the DBMS.

Implicit Procedure Call - A third alternative is for the
programmer to intermix host language statements and DML
statements. A preprocessor is then used to remove the DML
statements and replace them by procedure invocations; the
result is then a host language procedure which can be
compiled by the host language compiler. The DML
statements are processed by a DML compiler to produce
the appropriate procedures. This alternative provides an
extremely important advantage to the standards communi-
ty and to the implementor—the host language and compiler
are unaltered. Minor additional tasks are the development
of the preprocessor and a satisfactory way of embedding a
DML in the host language; these are far simpler than alter-
ing the host language and compiler. As in the case of na-
tive syntax, all of the program statements can be main
tained together.

- 19 -

3^2^2_Type£_and_LeY£l£_Q£_CQffimand£^

The ease of developing and maintaining application
programs may be greatly influenced by the degree to
which DML commands are procedural. Non-procedural com-
mands are generally simpler to construct, easier to read
and maintain, and involve less interaction between
the host programming language and the DML. Procedural
commands may be more flexible and may even be simpler for
algorithms that are not easily expressible in mathematical
logic. In either case, it is important that all data re-
lated to the centralized control of the database (e.g.,
integrity and security rules) be in a centralized
location (the data dictionary) rather than distribut-
ed to the programs. Non- procedural commands frequent-
ly define and manipulate data at the set level (i.e.

,

they
deal with whole sets of records), while procedural commands
generally manipulate only a single record at a time. Com-
munication between the application program and the DBMS is
generally minimized by commands at the set level. Optimiza-
tion is usually more effective at the set level, since the
optimizer has more knowledge of what records will be need-
ed. A set level interface therefore has important ad-
vantages for a distributed database, where a very
high price is paid for communication. Standard inter-
change forms are needed for representing data at the set
level

.

3^2^5__Conclusions About Interfaces to Applications.

There may be a conflict between the need for a DBMS in-
terface which is easy for use by people, and an interface
which is highly efficient for use by application language
processors. If so, one way to resolve this conflict is to
provide a single, highly efficient interface for all appli-
cation language processors, and then provide user-friendly,
high-level interfaces by means of application language pro-
cessors such as query languages. This approach is used in
the reference model, and is discussed in more detail in Sec-
tions 4. 1 and 4.2.

3.3 The Data Dictionary System

A Data Dictionary System (DDS) is a computer software
system used to record, store, protect, and analyze descrip-
tions of an organization's information resources, including
data and programs. It provides analysts, designers, and
managers with convenient , controlled access to the summary
and detailed descriptions needed to plan, design, implement,

-20 -

operate, and modify their information systems. The DDS also
provides end-users with the data descriptions that they need
to formulate ad hoc queries. Equally important is the com-
mon framework the DDS provides for establishing and enforc-
ing standards and controls throughout an organization.

A DDS may also be called an Information Resource
Dictionary System (IRDS), which more accurately describes
the broadness of its scope. The term IRDS may also sug-
gest the importance of the DDS to management, and there-
fore the importance of a user-friendly interface.

The management of a dictionary is an extremely
complex and challenging data management task; for ex-
ample, the Bachman diagram of Cullinet ' s Integrated Data
Dictionary contains 156 record types and 236 set types
[CULL83] . Just as a DBMS can be used as a support
tool for an integrated collection of application pro-
grams which constitute an information system, so a DBMS can
be used as a support tool for the integrated collection of
application programs which constitute a DDS. Conversely,
a DDS can provide various types of support to the DBMS.
This section provides an introduction to the basic func-
tions of a DDS and the importance of developing better in-
terfaces .

3.3.1 Content of the DDS.

The DDS describes entities (objects from the real
world that are modeled in an information system)

,

relationships (associations among these entities, represent-
ing facts about objects in the real world), and attri-
butes (properties of the entities or relationships).

Basic attributes of an entity or relationship in-
clude names (e.g., primary name for retrieval purposes,
title for reports, alternate names for different compilers),
keywords, and natural language definitions. The basic
attributes and entity types can generally be used to
select objects from the DDS; selection on the basis
of the attributes and relationships specified below is
desirable but not always provided by current DDSs

.

Attributes for controlling the use and modification of
an object in the DDS include date of creation, date of
last modification, creator, modifier, security mechanisms,
type of data, and other integrity constraints. A DDS
should provide attributes or some other mechanism to
identify test and archival versions of an object, as well
as the current operational version.

-21 -

Attributes for expressing quantities related to an ob-
ject include frequency of a process; frequency of re-
trieval, creation, deletion, or modification of a data en-
tity; cardinality of a data entity; and connectivity of a
relationship among data entities.

Relationships expressing structure include the system
hierarchy (e.g., system, program, and module levels, all of
which may have sublevels) and general control flow (e.g., a
program may have a list of programs that it calls and a
list of programs that call it). Data entities may exist
in a data hierarchy (e.g., file, record, and element lev-
els) and be contained in or identify other data entities.

Relationships expressing data flow include specif-
ication of input, output, and control data for process-
ing entities, and creation, deletion, access, and modif-
ication processes for data entities. Data flow should be
traceable at different levels of data and process abstrac-
tion, and between the conceptual schema, internal schemas,
and the external schemas

.

,5.5.2 Interfaces to User s.

The DDS provides documentation, analysis and
control capabilities to different types of users, such as
the end-user, the programmer, the Data Administrator,
and the Database Administrator. In general, the DDS pro-
vides data which may be selected, organized and presented
according to the requirements of a particular user at a
particular time. The DDS should therefore provide
query and report writer capabilities appropriate to
different classes of users.

The DDS may provide analysis programs for identifying
and reporting on various complex characteristics or
anomalies in the description of an information system,
such as entities that are not related to other entities,
programs that do not produce any output , or inconsisten-
cies among the data requirements of different levels of
a system. The DDS should provide an analysis of the impacts
of proposed changes—e.g., which programs would be affected
by a change in a particular data element . DDS analyses
should also provide for the support of particular users
and requirements. For example, one collection of ana-
lyses could support data analysis for the Data Ad-
ministrator, another collection could support struc-
tured programming for an applications programmer, and a
third could support data entry for a clerical person. The
analyses should be complemented by a query language to pro-
vide a high degree of selectivity.

-22 -

5.5.3 Interfaces to the DBMS.

One interface, that of providing information from the
DDS to the DBMS, subsumes the functions of the Data De-
finition Language (DDL), and includes the following:

o Descriptions of logical and physical struc-
tures and substructures, such as schemas,
subschemas, input and output screens, and reports,

o Descriptions of mappings among structures and sub-
structures ,

o Access rules,

o Integrity rules,

o Logical and physical performance statistics, and

o Descriptions of data distribution for a distributed
system.

Except for performance statistics, which are collected by
the DBMS and stored by the DDS, this interface consists of
requests for data by the DBMS and replies by the DDS
(i.e., the DDS is read-only by the DBMS except for perfor-
mance statistics).

Another interface, that of providing information
storage and retrieval from the DBMS to the DDS, may be used
to support the operation of the DDS. The advantage of this
support can be a simpler DDS, resulting in a smaller,
lower-cost product that does not replicate DBMS capabili-
ties. The DDS, in this case, is another application pro-
gram as far as the DBMS is concerned; the DBMS may pro-
vide the DDS with concurrent access, enforcement of access
rules, and other services, as well as information
storage and retrieval. This interface is independent of
the use of the DDS and, of course, is dependent on the im-
plementation of the DDS.

A DDS may have three distinct levels of interaction
with other components of the information system
passive, active, and dynamic [BCS 823.

A DDS that interacts only through a human interface is
called a passive DDS. Such a DDS is very useful in plan
ning , but is less useful in implementation and mainte
nance; the data within the passive DDS does not have
to be maintained, and therefore is usually not

-23 -

maintained.

A DDS that must be used to provide data definitions
for application programs at compile time is called an
active DDS. This is much more likely to be maintained
than a passive DDS, since it is a necessary part of the
information systems development, maintenance, and opera-
tions. An active DDS clearly has advantages for system in-
tegrity, since the data definitions in programs and the
DDS coincide at compile time. The DDS also has advantages
in productivity, since some of the programmer's work is ac-
complished by the DDS.

A DDS that must be used to provide data definitions at
execution time is called a dynamic DDS. This must be main-
tained to operate the information system. Clearly, a
dynamic DDS provides a much more flexible, quickly
adaptable, and more tightly integrated information sys-
tem than an active DDS. Another advantage of the dynamic DDS
can be a simpler DBMS, since the DBMS does not have to pro-
vide a DDL; this results in a smaller, lower-cost product
that does not replicate DDS capabilities. The performance
of the dynamic DDS may be very critical, since the DDS
will be very heavily exercised by the DBMS.

The active and dynamic DDSs can provide a great deal
more control than the passive DDS. Both active and
dynamic DDSs may be used by the Data Administrator,
Database Administrator, or Applications Administra-
tor to control the definitions and access to data ele-
ments, records, schemas, and subschemas. A dynamic DDS
also plays a major role in a distributed database system.
In this case, the DDS, which may be centralized or dis-
tributed, has the additional task of determining where data
resides in the network. A DDS in a heterogeneous system
may also have the task of controlling the translation of
data into the various data models used at dispersed facili-
ties .

3.5.4 Conclusions about Interfaces for DDS.

A dynamic DDS is a very powerful but also a very com-
plex tool. Some of this complexity can be avoided if the
DDS is supported by the DBMS; in this case, a highly effi-
cient interface to DBMS services is essential for the effi-
ciency of both DDS and DBMS. Also, a standard interface is
extremely desirable, so that one vendor can develop a DDS
supported by and supporting another vendor's DBMS. Such mu-
tual support could be essential to the economic feasibility
of future distributed database management systems. Section
4.1 addresses the relationship between DDS and DBMS in the

- 24 -

reference model.

3.4 DBMS Related Tools

Many tools aiding various aspects of database process-
ing are emerging as more and more DBMSs are being used in a
production environment. Presently, many DBMS vendors offer
their products in a modular fashion, integrated into a sin-
gle DBMS environment . A typical functional grouping might
be a DBMS as a basic access method, a data dictionary, an
end-user query language, a report writer, a transaction pro-
cessing monitor, and various other related tools. Some of
these facilities are implemented as part of the DBMS while
some use lower level procedural capabilities and thus can be
regarded as applications external to the DBMS. This section
will identify related tools that are generally offered as
external to the DBMS.

These related tools are categorized as follows:

o Application development tools,

o Database design tools,

o Decision support tools,

o Performance tuning tools,

o Maintenance support utilities,

o Data entry software,

o Download/upload and data interchange utilities,

o Support of multiple data models.

3^4^1_Aggli£ati£n_D£Ygl£pm£nt_TQQl£^

These tools allow systems analysts and programmers to
develop applications without coding in a traditional pro
gramming language such as COBOL or FORTRAN, but through an
interactive dialogue at a terminal. The languages provided
for application development tools are often called Fourth
Generation Languages. No precise definition of such
languages exists but a generally accepted definition is a
data manipulation language by which end-users can obtain
results from a database without programmer support. Such

-25 -

languages are typically interactive, like natural languages,
and specify WHAT is to be done rather than details about
HOW it is to be done. These tools are implemented via two
techniques which are called Application Generators and Pro-
gram Generators. An application generator is an interpre-
tive system that is molded to a speoific application en-
vironment. A user of the system enters a specification of
the results desired and the system responds by interpreting
the specification and performing the necessary functions.
Typical functions include database management and update,
report generation, retrievals, graphics, statistical
analysis, and screen layouts. A program generator is very
similar to an application generator, except that it produces
a program in a procedural language such as COBOL or PL/1 in-
stead of interpreting the user's specification. The main
advantage is that program generators produce programs that
can be transported to other environments, understood by oth-
er tools, and fine-tuned to provide increased capabilities
and efficiency.

3^4^2_Dat&ba££_D££ign_TQQi£J.

A few of these design tools are appearing in the market
place. These tools usually work together with a data dic-
tionary in which requirements are defined and cross-related.
These tools operate on the data collected in the data dic-
tionary, and perform analysis and synthesis as required to
minimize data redundancies. Some tools accept user require-
ments in the form of functional dependency clauses, perform
normalization algorithms, and produce data structures in
Third Normal Form.

Some of the database design tools accept input in the
form of a Specification Language and generate data flow di-
agrams to aid the user in data modeling and analysis. These
tools are useful for the data administrator or database
designer in displaying the associations among data objects
before procedures are designed as well as displaying optimi-
zation factors for physical database design.

3^4^2_D£Ci£iOE_S3ippQE£_T£fil£^

Decision support tools are those tools that assist
managers in their decision processes in semi-structured
tasks. Examples of these support tools include
spreadsheets, graphics charting and manipulation, statisti-
cal analysis tools, forecasting, and trend analysis tools
suitable for planning.

-26 -

5.4.4 Performance Tuning Tools.

These tools monitor many system resources over a
specified time period and produce statistics about the util-
ization of resources. Output data produced by these tools
may be used to find imbalances that degrade the performance
of the running system.

5.4.5 Maintenance Support Utilities .

Maintenance support utilities include software that
performs import /export of data files, creation of database
subsets, automatic database restructuring and reorganiza-
tion, and database merging. Certain types of audit trail
logging are available as part of the DBMS, but some systems
provide utility software external to the DBMS for extensive
logging, sometimes at the expense of system performance.
This extensive logging might be used for the purpose of
backup, recovery or auditing.

5 .4 .6 Data Entry Software.

Although most DBMSs support data entry either from
external files or from direct entry, additional tools permit
off-line data collection with specially built-in data vali-
dation checks. These tools may improve data quality,
transform data into the DBMS-acceptable format, and may
operate in a simple key-to-disk system external to the DBMS
host computer.

5.4.7 Download/Upload Utilities .

These tools extract subsets of a mainframe database and
download them for further processing by a microcomputer, or
upload them from the microcomputer to a mainframe.

5.4 .8 Support of Multiple Data Models.

These tools provide an external schema and operators
(e.g., the relational model) to an internal schema based on
a different model (e.g., the network model).

5.4 .9 Conclusions about DBMS Related Tools.

A wide variety of tools exist. Future improvements in
this variety may be facilitated by greater access to data
descriptions; such access could be conveniently and reliably
provided by a dynamic data dictionary. Future improvements
in efficiency may be facilitated by a highly efficient DBMS
interface. Section 4.1 and 4.2 address these issues with
respect to the reference model.

-27 -

3.5 The Operating and File Management System

The operating and file management system provides a
base upon which DBMSs are built . Only the simplest , single
user DBMS can do without the kind of services that are pro-
vided by the operating and file management system. Even
though these services are required for all DBMSs, the loca-
tion of these services is a significant issue. For perfor-
mance reasons, these services may be performed by the DBMS
rather than by the operating and file management system
[STON81 , STON83] . The discussion in this section highlights
the kinds of services provided to the DBMS and the specific
problems that classical operating and file management sys-
tems have in supporting DBMSs.

The following sections discuss operating and file
management services as they interact with DBMSs. The dis-
tinction between operating and file management services is
that the file management system manages secondary storage,
while the operating system manages other physical resources.

A DBMS must use processor resources in order to perform
its functions. These processor resources may be used either
directly by the DBMS or indirectly under the control of the
application needing the database functions. The structure
of the use of processor resources constitutes the process
structure of the DBMS [STON81]. A multithreaded (more than
one database request active at a time) DBMS often requires
some control process functionality which must act indepen-
dently of any particular application program process
[UNIV81]

.

Multithreaded DBMSs may include a task dispatcher which
acts to subdivide the processor resources which are allocat-
ed by the operating system among the tasks that exist within
the DBMS. This may be done when the DBMS implementor feels
that the task dispatching functions provided by the operat-
ing system are too inefficient or are too difficult to use
(e.g., too much overhead is required for setup of a new
task) or when a single threaded operation is required to
control the access and locking of internal control tables
[CULL82] . The use of this kind of "subdispatching" by the
DBMS may cause the loss of useful or desirable capabilities,
such as the use of multiple processors.

-28 -

3^5^2_Memory_C£EtmL

A DBMS almost always has requirements for services for
dynamic allocation and deallocation of main memory. (A mul-
tithreaded DBMS always has requirements for these services.)
Memory allocation and deallocation are usually required for
the control structures of the database and for temporary
storage associated with application program transactions
which use the database. Many DBMS implementations use
internal memory management routines to handle the allocation
and deallocation of memory for control structures. These
internal memory management routines will have, at most, in-
frequent interaction with the operating system when there
are major changes in the overall memory requirements of the
DBMS. This is generally used to overcome major overheads
imposed by the operating system for memory allocation and
deallocation [CULL82]

.

5.5.3 I/O Control and Buffer Management.

The operating system is almost always responsible for
the basic control and scheduling of input /output (I/O)
resources such as devices and I/O channels. DBMS implemen-
tations generally make use of the I/O control features of
the operating system. In addition, operating systems may
provide cache or buffer management services [RITC74] . The
cache and virtual memory functionality of the operating sys-
tem may cause problems when interacting with a DBMS, since
the DBMS may provide cacheing which conflicts with that of
the operating system. Cache disk controllers, if present,
add to the complexity of this process. In particular, the
problems of recovery in this environment may become un-
manageable. See [STON81 3 for further discussion.

5.5.4 Operating System Services.

The DBMS may use many other operating system services.
Security, for example, while of major importance to DBMS ar-
chitecture, is usually handled at a coarse (e.g., file) lev-
el by the operating system. Thus, the DBMS must provide an
additional level of security control, usually by reference
to some internal database. Accounting for utilization of
DBMS resources may have to be handled by the DBMS, since the
operating system usually has little visibility into the
internal usage of resources by the DBMS. Thus, even though
these resource management services have their analogues in
DBMSs, the direct use by a DBMS of these operating system
services will require mechanisms for providing additional
visibility by the operating system into the internals of the
DBMS.

-29 -

Session and transaction control are another function of
major importance to the DBMS. First, except in the single
threaded case, a session will usually have to be established
for DBMS control functions [UNIV81]. This session will be
over and above the sessions that are established for appli-
cation program execution. The operating system usually uses
processes or sessions as the vehicle for allocating proces-
sor resources. In addition, the operating system provides
to the DBMS notification of new application program transac-
tions, and notification of the (perhaps precipitous) termi-
nation of application program transactions. These services
are required by the DBMS for monitoring users and for error
recovery procedures.

3.5.5 Secondary Storage Management

.

The secondary storage management functions that are of
interest here are allocation of space and the maintenance of
directories. Almost any operating system will provide these
services since they are required operating system func-
tionality. This functionality is often subsumed within the
DBMS [STON83]. When the DBMS assumes this function, the
DBMS will allocate space and manage directories for a block
of space that is reserved from the operating system. This
kind of space management provides a better correlation
between logical closeness and physical closeness than may
otherwise occur. For example, a file management system
which uses linked blocks for file allocation can cause per-
formance problem for the DBMS because closeness of data
within the file may not correlate with the closeness of the
data on the physical media [RITC74] . The maintenance of
directories for secondary storage introduces additional
overhead. In particular, if a directory access is required
for file access, major additional overhead may be introduced
[STON81]

.

Access methods are the means by which the requests for
I/O made by application programs are translated into physi-
cal I/O requests. This is another function which may or may
not be assumed by the DBMS. When a DBMS uses the operating
system version of this function, a simple form of direct ac-
cess or random access method is used. The DBMS and not the
access method provides the structuring of the data that is
visible to the application program.

2^5^£_Qthgr_Fil£_Management_Seryices^

A file management system typically provides a wide
range of additional services. Two types of services which
can be provided are security and file copy and backup ser-
vices. Security as provided by the file management system

-30 -

has the same problem as security provided by the operating
system; it is at too coarse a level for use by the DBMS
since the file management system does not see the internal
DBMS structure. Many DBMSs use the file copy and backup
utilities that are provided by the file management system.
However, this can not be done when the other file management
system functions mentioned above, such as space allocation
and file access method, have been subsumed by the DBMS. In
these cases, it becomes the responsibility of the DBMS to
provide file copy and backup services as well.

3.5.7 Conclusions about the OS and File Management

.

The services of a typical operating system have been
optimized for a typical environment emphasizing file pro-
cessing instead of DBMS applications. Typical operating
systems view the DBMS as another application and react poor-
ly when the DBMS does not behave as a typical application
program. The previous paragraphs give examples of the kinds
of problems that arise as a result. This leads to the con-
clusion that more coordination between the operating system
and the DBMS is required for future database systems . Sec-
tion 4.4 summarizes this section as it applies to the refer-
ence model.

3.6 Protocols and Distributed Systems

The Open Systems Interconnection and DBMS reference
models should complement each other as parts of a more com-
plete model for computer based information systems. Distri-
buted databases require a system interconnection framework
such as that provided by the OSI model. The sections below
discuss the OSI model as it relates to databases and to the
requirements for distributed databases.

5.6.1 Database Functions and the OSI Model.

The OSI model consists of seven layers as shown in Fig-
ure 3.2.

- 31 -

+ +

I APPLICATION LAYER I

I 1

I PRESENTATION LAYER I

I I

I SESSION LAYER I

I
—

|

I TRANSPORT LAYER I

I

—
I

I NETWORK LAYER I

l I

I DATA LINK LAYER I

I I

l PHYSICAL LAYER I

+ +

FIGURE 3.2 - OSI REFERENCE MODEL

The application layer of the OSI model provides infor-
mation services for applications. The remote file access
and basic DBMS functions of data storage and retrieval are
examples of application layer functions. Integrity and
security functions are also best included within the appli-
cation layer. This includes functions to ensure database
consistency (e.g., locking and transaction management of
atomic units of work) and to perform recovery (e.g., roll-
back) .

The presentation layer of the OSI model organizes in-
formation into a recognizable form for the applications. It
is needed for the management of heterogeneous data. This
layer manages the entry, exchange, display and control of
structured data. Data transformations to support storage
and retrieval by the DBMS are functions of the presentation
layer. The virtual file protocol is an example. Typical
presentation services are [FOLT81]

:

o Data transformation: code and character set transla-
tions ,

o Information formatting: modification of data layout,

o Syntax selection: selection of transformations and
formats used.

-32 -

A DBMS uses the services of the session layer and the
layers below to accomplish its functions, but the DBMS func-
tions themselves are in the application and presentation
layers

.

If data is distributed for storage at multiple loca-
tions, there can be any degree of dispersion of DBMS func-
tions to the multiple locations. For example:

o The full DBMS up through the application layer may
reside at multiple locations, with protocols up
through the application layer for systems intercon-
nections .

o Only presentation layer functions (and supporting
lower layers) may be distributed.

o Only file management functions in the session layer
may be distributed, limiting intersystem protocols to
lower layers.

Bachman and Ross [BACH82] have made the point that the
functions of the presentation layer support data transforma-
tions for:

o Interprocess communication,

o Data storage and retrieval,

o Operations on data local to the process.

The original OSI concept was developed to address the first
of these categories. This suggests the need for a model for
computer based information systems that would relate systems
interconnection and DBMS. A more complete model, diagrammed
in Figure 3.3, should be based on sub-architecture models
for

:

o Application and presentation,

o Interprocess communications (session layer and
below)

,

-33 -

o System services (file management portion of data
storage and retrieval).

APPLICATION LAYER
—

+

1

1

PRESENTATION LAYER 1

a

1

a

1

1

1

1

1

l SESSION
1

1

1 SYSTEM
1 SERVICES
1

-r

l

1

l TRANSPORT
1

1

1

1

l

I

1 NETWORK
1

1

1

1

1

1

1

l

1

1 DATA LINK 1

1

1

1

1

1

l

1

1 PHYSICAL
1

1

1

1

1

l

FIGURE 3.3 - REFERENCE MODEL MAJOR
SUB-ARCHITECTURES

FUNCTIONAL

The concept of an operating system data management ker-
nel, as presented by [DIEL84] may provide a basis for the
definition of system services.

A database reference model must relate to and use the
OSI framework. However, the database reference model cannot
be framed within the OSI

.

5.6.2 Dist ributed DB Capabilities and OS.

This section describes the additional services required
by distributed database management systems (DDBMSs) beyond
those required to support centralized database management.

Types Qf Distributed DBMS

DDBMSs can be characterized by the types of data they
support and the types of distribution. There are two types
Of DDBMSs:

-34 -

o Heterogeneous - support dissimilar data models or
DBMS,

o Homogeneous - support one data model and one type of
DBMS

.

Each of these types may contain any of three levels of re-
plication of data:

o Fully replicated - all data items are physically
present at each node,

o Partitioned - each data item is physically present at
one and only node,

o Partially replicated - a data item can exist at any
number of nodes of the system as defined by the ap-
plication.

Meta Data Requirements

The capabilities to be discussed are those needed to
support the most general case, a partially replicated DDBMS

.

In addition to the meta data required to support a cen-
tralized DBMS, the DDBMS must include the following meta
data to support distributed query processing, updates and
node recovery:

o Schema information
- Distribution and replication of data at physical

nodes
- Global schema information
- Local schema information
- Level of consistency of data elements required at

each node

.

o Dynamic system availability information
- Status of network nodes
- Timing information necessary to detect and resolve

global deadlock.

Functional Requirements of a Homogeneous DDBMS

- 35 -

The schema information must allow the DDBMS to optimize
global queries due to the relatively high cost of communica-
tions. It also must resolve the level of integrity and con-
currency control necessary on an update at each non-local
node where a data element is replicated.

The dynamic system availability information is neces-
sary to allow recovery operations such as reallocation of
down nodes, restarts and checkpointing, and detection of
deadlock at the global level.

The schema management data can be viewed as belonging
to the DDBMS. In the case of distributed operating systems,
this information must be passed to the operating system in
the form of operating node preferences prior to the operat-
ing system's determination of where to dispatch the task.
If this information is not included in the scheduling algo-
rithm of a distributed operating system, significant ineffi-
ciencies can develop as the operating system, using classic
node performance and load information, moves a program away
from the required data.

The node availability information can be viewed as
shared between distributed operating systems and the DDBMS.
The operating system must maintain the status information
for task scheduling and recovery. The DDBMS needs a finer
granularity of status information because the operating sys-
tem may view a node with a disk failure as available in a
degraded mode while the DDBMS may view the node as down.

In order to maintain global database consistency, com-
municate site status information, and perform recovery, the
DDBMS must make heavy use of application layer protocols as
described earlier in this Chapter. The DDBMS depends on the
underlying operating system to supply support for all lower
levels of the OSI protocol.

Functional Requirements of a Beterogeasous ddbms

In addition to the meta data necessary to support a
homogeneous DDBMS, heterogeneous DDBMS meta data (as noted
in [SMIT81]) must include:

o Mapping of the DDBMS global schema to local DBMS
schemas

.

o Rules to resolve conflict among data from different
nodes of the DDBMS

.

A heterogeneous DDBMS has significantly different operating

-36 -

system interactions from the homogeneous DDBMS described
previously. This is due to the fact that a heterogeneous
DDBMS is a super-structure built on a collection of already
existing operating systems and DBMSs. A prime goal of a
heterogeneous DDBMS is not to impact the local users of the
local DBMS at any node [GLIG84] . A consequence of this goal
is the implementation of the heterogeneous DDBMSs by means
of local data managers (interfaces to the local DBMS). Each
local data manager appears to its local DBMS as simply
another user or application. Another consequence is the
fact that most prototype heterogeneous DDBMS are read-only
systems

.

These goals lead to minimal interactions between the
heterogeneous DDBMS and the local operating system. The in-
teractions tend to occur at the session and presentation
layers of the OSI model and include:

o Establishment of the circuit between the system
operating the DDBMS and other nodes it must access.
This includes login procedures.

o Data format translation.

While heterogeneous DDBMSs are the subject of significant
current research, they can be viewed as a practical, tem-
porary solution to the problem of the huge investment in-
volved in converting existing programs to a new DBMS. The
remainder of this document will concentrate on homogeneous
DDBMS as the subject of the reference model.

3.6.5 Conclusions about Interfaces for DDBMS.

The distributed DBMS can cooperate with a distributed
operating system to produce better performance by combining
node processing characteristics with data location. Howev-
er, if the DDBMS and the distributed operating system are
not linked, the results can be disastrous. As in the case
of centralized operating systems and centralized DBMSs, the
operating system and the DBMS should be viewed as interact
ing components of the same system and not as a DBMS operat-
ing under the control of the operating system. The applica
tion of the reference model to distributed data management
is summarized in Section 4.4.

- 37 -

4. THE REFERENCE MODEL*

The DBMS Reference Model is introduced in Figure 4.1.
The Data Mapping Control System (DMCS) is a "oore DBMS,"
which provides operators for both data manipulation and data
description. Data description is accomplished by applying
data manipulation operations to data structures that
describe other data structures; Section 4.1 discusses a
" self-describing" data model schema. The DMCS is based on a
"fundamental" data model which is capable of supporting data
manipulation and description in other data models, assuming
that an appropriate translation is made by a Data Management
Tool (DMT). For example, support of the relational, network,
hierarchical, object-role, and entity-relationship models
would be desirable. Examples are given in terms of the rela-
tional model, but the basic ideas presented are independent
of any data model.

i

FIGURE 4.1 - DBMS AND ITS ENVIFIONMENT
I

* Authors: Leo Mark and Nick Roussopoulos , U. of Maryland.
This work was partially supported by NASA under Contract
No. NAS 5-27724.

- 38 -

The DMCS is a generalization of the "core database
handler” of [CCA82a], the "information processor" of
[GRIE82] , and the "DL-Processor" of [MARK84] . Requirements
for DMCS data description are presented in section 4.1.
DMCS functions to fulfill these requirements are presented
in section 4.2.

The Data Language interface (DL) is the data manipula-
tion language for the DMCS data model. Because the data
model schema is self-describing , all data definitions, re-
trievals, and manipulations are provided by the DL inter-
face; there is no need for a separate data definition
language interface to the DMCS. Both NDL [X3H284] and SQL
[X3H285] should be considered as possible candidates for the
DL. (However, it should be noted that both NDL and SQL are
intended to be used by people; it is possible that a more
complex, more efficient data model, not so friendly to peo-
ple, might be more suitable for the DL.)

Data Management Tools (DMTs) are software components
which communicate with the DMCS through the DL interface

.

These tools provide database interfaces which are oriented
toward more specific applications or functions than the
general-purpose DL interface. Examples include user inter-
faces to the Information Resource Dictionary System (IRDS),
high-level query languages, graphics systems, report writ-
ers, and database design tools. Support for other data
models may also be provided by DMTs that translate opera-
tions on particular data models into operations on the DMCS
data model . Either NDL or SQL or both could be supported by
appropriate translators. DMTs are described in more detail
in section 4.3.

The Internal Data Language interface (i-DL) is the in-
terface through which all data is passed between the DMCS
and the Operating System (OS) which supports the DMCS. The
services offered to the DMCS by the OS across the i-DL in-
terface are discussed in the chapter on the DBMS and its en-
vironment (Chapter 3), and are summarized in section 4.4.

4.1 Data Analysis

Two orthogonal dimensions of data description are
recognized

:

-39 -

o The point-of-view dimension

o The intension-extension dimension.

The point-of-view dimension has three types of schemas,
resulting in databases with the logical architecture illus-
trated in Figure 4.2 (a simplified version of Figure 2.1).

FIGURE 4.2 - THREE SCHEMA ARCHITECTURE

-40 -

The three-schema logical database .^architecture allows a
clear separation of the information meaning, described in
the conceptual schema, from the external data representation
and from the internal physical data structure layout. This
results in databases which are flexible and adaptable to
changes in the way users view the data and in the way data
is stored. This flexibility and adaptability is usually
called data independence, as already noted.

The intension-extension dimension has four levels of
data description, resulting in databases with the logical
architecture illustrated in Figure 4.3 [R0US84]

.

DATA MODEL
SCHEMA

FIGURE 4.3 - FOUR LEVELS OF DATA DESCRIPTION

-41 -

Each level of data description is both the extension
(the "data") of the description at the next higher level,
and, at the same time, the intension (the "schema") describ-
ing the next lower level. The four-level data description
allows a clear separation of information about the data
model, described in the data model schema; information about
management and use of databases, described in the data dic-
tionary schema; information about specific applications,
described in application schemas; and application data
[MARK84 , JEFF83]

.

The following sections provide a more detailed descrip-
tion of the three schema point-of-view dimension and the
four level intension-extension dimension.

4^i^i_The_P£in£-Gf-Yi£w_Dimen£iQn^

A conceptual schema describes all relevant general
static and dynamic aspects, i.e. all rules, laws, etc., of
the universe of discourse. It describes only conceptually
relevant aspects, excluding all aspects of data representa-
tion, physical data organization, and access [GRIE82]

.

All the rules are described in the conceptual schema
because it is easier to extend, modify, and verify one set
of rules which completely controls all operations on the
data. If some rules were allowed to be described in appli-
cation programs, a very strict programming discipline would
have to be enforced to control, verify, and maintain the
multiple copies of the same rules. Only relevant general
aspects should be described; that is, classes, types, and
variables, rather than individual instances, and rules and
constraints having a wide rather than a narrow influence on
the behavior of the universe of discourse. Focusing on con-
ceptually relevant aspects not only simplifies the conceptu-
al schema design process, it also makes the conceptual sche-
ma insensitive to changes in users' views on data and to
changes in the way data is physically stored.

The three-schema logical architecture is based on the
assumption that the meaning of data, that is, the conceptual
schema, is relatively stable over time, as compared to the
external and internal schema.

An external schema describes parts of the information
in the conceptual schema in a form convenient for a particu-
lar user group. This local view of data may include locally
meaningful names for data structures, additional or variant
restrictions on access or update to the data, or simplifica-
tions of data structures as, for example, virtual joins.

-42 -

However, the information described in an external schema can
only be a subset of the information described in the concep-
tual schema. This means that no new information can be pro-
duced by any mapping from conceptual schema to an external
schema

.

The internal schema is a description of the physical
representation of all the information described in the con-
ceptual schema. It concentrates on which forms give the
most efficient access with respect to storage media, control
of concurrent use, recovery, etc. The internal schema must
be designed to provide for the optimal physical representa-
tion of all information in the conceptual schema. The inter-
nal schema design cannot be developed without information
about all external schemas and their use in applications:
weight of importance, access frequencies, etc.

4.1.2 The Intension-Extension Dimension.

The universe of discourse of the data model schema is
the DMCS data model. For example, if the DMCS data model is
the relational model, the data model schema contains the de-
finition of such concepts as domain, attribute, relation,
and key. In any case, the data model schema contains the
definition of all laws and rules for combining such concepts
into acceptable schemas, and it contains the definition of
all laws and rules for changing schemas

.

The four-level data description is based on the assump-
tion that the data model does not change, since the data
model schema is generally built into the DBMS software.
However, the data model supports evolution and change in the
meaning, management, and use of application databases; that
is, data dictionary schemas and application schemas can
change. Clearly, change in the schema levels is potentially
very dangerous to the integrity of the databases and there-
fore requires suitable controls. The four-level data
description facilitates explicit meta data management, which
is important to developers of plug-compatible Data Manage-
ment Tools.

The data model schema describes and controls all opera-
tions on the class of schemas which may be defined by the
DMCS data model. The data model schema is itself defined by
means of the data model. This means that the data model
schema is a member of the class of schemas it describes- it
is self-describing. For detailed examples of self-describing
data model schemas see [HOTA77, ROUS83, ROUS84, MARKS 3]

.

-43 -

The data model schema that describes the DMCS data
model is very important because . it allows standard access to
all data in the schema. With this standard access, plug-
compatible Data Management Tools can be developed by dif-
ferent vendors; without standards access, development of new
tools may be possible only for the vendor of the DMCS.

The extension of the data model schema describes the
data dictionary schema. The universe of discourse of the
data dictionary schema is all information in the management
and use of the database system, including the management and
use of schemas in the database system. It is therefore only
natural that the data model schema should be stored in its
own extension, the data dictionary schema. In practice, the
data model schema must be realized, at least in part, by
coding within the DMCS . Furthermore , such coding must , as a
bare minimum, be able to reference and interpret tables
representing the remainder of the data model schema. Effi-
ciency may require that the entire data model schema exist
as code.

The two upper boxes in Figure 4.4 illustrate the rela-
tionships between the data model and data dictionary sche-
mas. The shaded part of the data dictionary schema
represents the data model schema. The shading indicates
that the data model schema cannot be altered, even though it
can be considered part of the data dictionary schema. The
arrows on the lefthand side of Figure 4.4 lead from inten-
sion to extension, and the arrows on the righthand side show
how intensions are explicitly stored as part of their exten-
sions .

Besides that part of the data dictionary schema which
is identical to the data model schema, the data dictionary
schema defines concepts such as user, authorization, pro-
gram, and schema. It contains the definition of all rules
and laws, both static and dynamic, on who may use the data
dictionary, and how the data dictionary may be used.

Application schemas are contained in the extension of
the data dictionary schema, as in the small box labeled AS
in the data dictionary data box of Figure 4.4. That is, the
application schemas are part of the data dictionary data.
The universe of discourse of an application schema is a
"real world" application. Also, data dictionary data in-
cludes information about how specific programs use applica-
tion schemas, how specific users are authorized to access
data through specific application schemas, etc. All of this
data dictionary data is properly described by data struc-
tures in the data dictionary schema.

-44 -

Data Dictionary Schema
is the extension of the

Data Model Schema

Data Dictionary Data
is the extension of the

Data Dictionary Schema

Application Data is the

extension of the Appli-
cation Schema part (AS)

of the Data Dictionary
Data

I
DATA MODEL

I SCHEMA

APPLICATION
DATA

imaginary Data Model Schema;
it is explicitly stored as

part of its own extension.

explicit Data Dictionary
Schema; a copy of it is also
stored in its own extension.

FIGURE 4.4 - LOGICAL SELF-DESCRIBING DB ARCHITECTURE

-45 -

Since the data in the data dictionary contains all the
specific data needed to manage application schemas and their
use, it is natural to store, as part of the data dictionary
data, specific data on how to manage and use the data dic-
tionary schema. For example, such information would include
controls on access to the data dictionary sohema. This sug-
gests that the data dictionary schema, whioh contains suoh
management and control information, might be stored as part
of the data dictionary data. In other words, the data dic-
tionary has many of the characteristics of "real world" ap-
plications, so it is reasonable to store its schema with
schemas for such applications. This is illustrated by the
shaded box in the data dictionary data box of Figure 4.4;
the shading indicates that the data dictionary schema cannot
be altered by the ordinary user of the data dictionary data.
The data dictionary administrator may, however, use the data
model schema to modify the data dictionary schema.

Finally, the application data is the extension of that
part of the data dictionary data which constitutes the ap-
plication schemas. This is illustrated by the application
data box of Figure 4.4.

Any new system in this architecture is created with
data structures to hold the data dictionary schema, includ-
ing a populated data model schema.

It is worth noting that only the data model is fixed in
the system (the data model schema cannot change) whereas the
data dictionary schema can be designed to support the par-
ticular applications using the DBMS.

-46 -

4^1^3_D&t&_Ql&££ifiQ&ti£n^

As mentioned in the beginning of Section 4.1 the two
dimensions of data description are orthogonal, as depicted
in Figure 4.5 [H0TA84]

.

INTENSION-
EXTENSION
DIMENSION

FIGURE 4.5 - ORTHOGONAL DIMENSIONS OF DATA DESCRIPTION

A clear separation of the meaning of information from
the external data representation and from the internal phy
sical data storage layout is an important issue in data
management. This is widely accepted for application data
management. For schema management, this well established
data management principle is rarely followed. However, some
collections of schemas are of a considerable size; not only
may a schema contain thousands of data object types, but
the number of derived external schemas may also be counted
in thousands too. An example of this is NASA's space n . .

sion database. Space mission data will be used in derived
versions by NASA in a considerable number of projects and
scientists and companies all over the world. Keeping tra r'k

-47 -

of all these data descriptions is a very real database prob-
lem.

The size of the database is not the only measure to use
when deciding on whether or not a data management problem
qualifies as a database problem. The servioes offered by a
database management system may be needed if the problem has
one or more of the following requirements:

o Large volumes of data,

o Separation of the meaning of information from the
external and internal data representation,

o Heavily interrelated and constrained data,

o A large number of queries and updates,

o Ad-hoc non-standard queries and updates of data,

o Flexible security,

o Concurrent access,

o Different user interfaces.

Schema management has all of these requirements and there-
fore should be considered a database problem in itself.

The following paragraphs explore the use of established
database principles in schema management. That is, the
three schema architecture of Figure 4.2 is applied to the
upper levels of data description of Figure 4.3.

A conceptual schema for a data model must concentrate
on the meaning of the concepts of the data model and on the
rules and laws for putting these concepts together in ac-
ceptable definitions in the schema.

An external schema for a data model, on the other hand,
must present data model concepts and schemas in terms of
data structures which are easy for the database administra-
tors to understand and use.

An internal schema for a data model must be a highly
efficient physical realization of the conceptual schema for
the data model, since all database operations are ultimately
interpreted and controlled by that schema.

-48 -

A conceptual schema for a data dictionary concentrates
on the meaning of concepts related to the management and use
of a database system. The schema must describe the meaning
of all of these concepts and the relations between them, and
it must control all operations on data dictionary data. The
concepts described in the data dictionary schema comprise
all those described in the schema for the data model and, in
addition, must describe concepts like user, authorization,
program, view, schema, mapping, concurrency, and perfor-
mance .

An external schema for a data dictionary presents a
subset of the information described in the conceptual schema
for the data dictionary in a form and detail convenient to a
DBA or other user carrying out a certain task. There may be
external schemas for such data dictionary tasks as applica-
tion schema design, security, and usage statistics.

An internal schema for a data dictionary describes all
the information contained in* the conceptual schema for the
data dictionary in a form which can be effectively and effi-
ciently stored on the supporting storage system.

4.2 Function Analysis

This section analyzes three kinds of DMCS functions:

o Basic functions of reference, deletion, and creation,
discussed in Section 4.2.1.

o Basic functions to transform data between external
and conceptual views, and conceptual and internal
views, discussed in Section 4.2.2.

o Compound functions built from basic or other compound
functions, discussed in Section 4.2.3.

4^2^1_Basie_DMC£_Functions_-_Intension-ExteasiOB_DiS!eBSiQIJ

Figure 4.6 is a combination of Figures 4.1 and 4.4,
with an overlay that indicates the steps required to refer-
ence data. These steps are:

-49 -

First, as Indicated by (1) in Figure 4.6, the data dic-
tionary must be opened to establish the data dictionary
schema, which is also the data model data. This also estab-
lishes the data model sohema, beoause the data model is
self-describing , as already noted. The data structure stor-
ing the data dictionary schema can be aocessed directly, be-
cause the data model schema is built into the DMCS. Second,
as indicated by (2), an application schema is opened; it can
be interpreted by the DMCs through use of the data diction-
ary schema. Third, as indicated by (3), data is requested;
it can be interpreted through use of the application schema.
Fourth, as indicated by (4), the referenced data is received
by the requestor.

Deletion of a data object is similar to referencing
data, except that there may be update dependencies describ-
ing how a command for the deletion of one data object pro-
pagates to other data objects at the same level. This kind
of propagation of commands is termed intra-level propagation
[R0US84] . Deletion of a data object at one level which
describes data at a lower level may cause side effects that
are termed inter-level propagation [ROUS84] . For example,
if a relation is deleted from an application schema, then
all tuples described by that relation must be deleted.

Similarly, creation of a data object may involve the
creation of new rules or laws, static or dynamic, which may
cause intra- or inter- level propagation of commands.

-50 -

CONTROL FLOW

SCHEMA REFERENCE

DATA FLOW

FIGURE 4.6 - FOUR-LEVEL FUNCTIONS

- 51 -

It may be Impossible for the DMCS to automatically pro-
pagate all the effects of a deletion or creation of a data
object [MARK83] . In this situation the extension must be
marked as not fully specified, and the user is made respon-
sible for providing additional information to complete the
operation. For example, the creation of a new constraint
PERSON-PAID [NAME] < PERSON-WORKING [NAME] (that is, a per-
son who is paid must be working) can be handled automatical-
ly by the system only if there are no violations of the con-
straint in the extension, or if there is an additional rule
specifying how violations are to be handled (e.g., by delet-
ing the appropriate tuples). However, the creation of a re-
lation derived from other relations by means of the DL
(e.g., relational algebra) can be handled automatically by
the system. The creation of a new relation with empty ex-
tension can also be handled automatically by the system.

Finally, it should be noted that because each level of
data is the extension of another level, there is no need to
distinguish between data definition and data manipulation.
A separate Data Definition Language is unnecessary, although
it might still be desirable as a Data Management Tool to
provide a higher-level interface for a specific data model.
For example, the NDL and SQL Schema Definition Languages or
the Information Resource Dictionary System might be more
suitable than the DL for most users.

Figure 4.6 is easily interpreted in the context of a
relational data model. The data model schema describes the
relational model using the relational model primitives
(i.e.

,

relations). The data model schema extension is a set
of tuples each of which describes a relation of the diction-
ary schema. The data language, DL, is the relational alge-
bra or calculus. The DMCS is a processor for the relational
algebra or calculus. The i-DL language is the interface
through which all data is passed to or from the operating
system to be stored or retrieved.

4.2.2 Basic DMCS Functions - Point-of-View Dimension.

Figure 4.7 is a combination of Figure 4.6 and Figure
4.2.

- 52 -

CONTROL FLOW

'##1' SCHEMA REFERENCE

—— DATA FLOW W///////////A

EXTERNAL

CONCEPTUAL

INTERNAL

FIGURE 4.7 - FOUR-LEVEL THREE SCHEMA FUNCTIONS

- 53 -

The diagonal arrows at the upper left corners of the
boxes in Figure 4.7 are intended to indicate that each func-
tion may involve transformations among the three schemas.
For example, step (4) requires transformations from the
internal to the conceptual to the external point s-of-view.
The DMCS must therefore include the external /conceptual and
conceptual/storage transformer of Figure 2.2 from the
ANSI/SPARC framework. The internal/ storage transformer of
that framework should be part of the OS in future DBMSs.

4_._2_._3 Compound DMCS Functions.

The compound DMCS Functions must be built upon the
basic DMCS functions. They must support and enforce the
point-of-view dimension and the intension-extension dimen-
sion of data. The compound DMCS functions must supplement
and not overlap or replace functions which, from a database
point-of-view, should be provided by the operating system.
Plug-compatibility between the DMCS and Data Management
Tools is, of course, required for tool portability.

The DMCS must provide at least the following compound
functions

:

o DL processing
o Integrity control,
o Authorization control,
o Support of the point-of-view dimension of data,
o Support of the intension-extension dimension of data,
o Concurrency control,
o Performance control,
o Physical access.

DL-processing : The DMCS must be able to accept syntactically
correct DL statements issued from a user or a Data Manage-
ment Tool, and must return retrieved data through the DL
interface

.

Integrity cent rol : The DMCS must be able to interpret ap-
propriate data objects in the database as rules and laws for
database modification. The DMCS must be capable of enforc-
ing these rules and laws. This is closely related to en-
forcing the intension-extension dimension of data (below).

Authorizat ion control : The DMCS must be able to interpret
appropriate data objects in the database as rules and laws
for database access.

Support of the point -of-View dimension : The DMCS must be
able to transform DL statements at the external schema level

- 54 -

into i-DL statements at the internal level and conversely.

Support of the intension-extension dimension : The DMCS must
be able to enforce inter-level propagation of data manipu-
lation commands.

Concurrency control- The DMCS must be able to coordinate
multiple user interactions through the DL interface.

Performance Control: The DMCS must collect statistics about
the state and usage of the database's internal and external
data.

Physical aooess: The DMCS must be able to issue i-DL state-
ments as a result of accepted DL statements which are prop-
erly checked, sequenced, and transformed, and the DMCS must
be able to accept data objects returned through the i-DL in-
terface from the operating system.

Different implementations of a DMCS supporting the
above compound functions are possible, but it should be not-
ed that standardization of components and interfaces within
the DMCS is much less important than the standardization of
the DL and the i-DL interfaces. Some of the compound DMCS
functions mentioned above may be explicitly modeled in the
data dictionary schema. This provides the DBA with the
freedom to extend or modify the data management strategy, as
for example in the area of authorization control, to satisfy
special requirements of the enterprise.

4.3 Data Management Tools

The Data Management Tool box contains a variety of
software components that support higher-level functions than
those of the basic DL. All Data Management Tools interact
ing with the DMCS must do so through the DL interface, but
each tool may have its own user interface, specially
designed with specific functions and users in mind.

These specifications establish a framework for two
layers of standards: those for the DL and i-DL correspond
ing to low-level, basic functions, and those for the Data
Management Tools corresponding to higher-level, derived
functions. The coordination of standards for the Data
Management Tools will be greatly simplified by the existence
of a common DL interface to the database.

- 55 -

4.4 Operating System

The Operating System is part of the environment of a
DBMS. As discussed in 3.6, the operating system services in
many existing systems are not well-matched to DBMS require-
ments. Current DBMSs therefore duplicate many OS capabili-
ties. It is important that designers of future operating
systems become more sensitive to DBMS needs and design
small, efficient operating systems with only the desirable
services provided, rather than general-purpose operating
systems that offer all things to all people at a much higher
overhead.

The services of the OS which are required to support
the DMCS are divided into those which directly support the
i-DL and those which provide the proper environment for DMCS
execution. Those services required to directly support the
i-DL are as follows:

o Input and output of the objects (records) of the da-
tabase. This includes the management of buffer space
associated with input and output

.

o Searching and retrieval of records based on specific
values of the attributes.

o Creation of new records.

o Allocation and deallocation of secondary storage
space used by the DMCS.

o Locking mechanisms to prevent other processes from
accessing data which is under DMCS control.

Those services which are required in order to provide a
proper environment for the DMCS are

:

o Memory management (allocation and deallocation) for
working storage for the DMCS.

o Scheduling and dispatching of the tasks of the appli-
cations, tools, and the DMCS.

o A mechanism to support the invocation of services
across the DL and i-DL interfaces. This mechanism
could be subroutine calls, executive service calls,
or a combination of these two techniques.

- 56 -

o Security to protect the data managed by the DMCS and
to protect the DMCS itself from unauthorized modifi-
cation.

o Loading and executing the DMCS.

o Exception handling and passing of appropriate excep-
tion parameters to the DMCS for handling.

o Creation of saved backup copies of the data managed
by the DMCS and restoration of these saved backup
copies to secondary storage.

o Recovery of data managed by the DMCS in case of
failure of the DMCS or OS.

o Performance and resource usage statistics gathering
for use in both accounting and performance tuning.

In addition to the above services a distributed DBMS
requires at least the following set of services from a sup-
porting distributed operating system and network management
system

:

o Communication management
- Creation of logical links between system nodes
- Detection of network problems
- Message routing
- Reliable message delivery
- Error correction
- Data formatting (compression, encryption, transla-

tion, etc)

o Control functions
- Remote logon and security
- Interprocess communication
- Global name management
- Process management and synchronization
- Logical network configuration management
- Global resource management and scheduling

To make future operating system designers more sensi
tive to DBMS needs, a future standard should specify an i-

DL interface and identify and describe the set of operating
system services needed by the DMCS. If this is done, the
notion of plug-compatibility may apply not only to the DL-
interface, but also to the i-DL interface.

- 57 -

5 . CONCLUSIONS

A reference model for DBMS standardization has been
proposed. Its characteristics are:

o It is based on a two-dimensional classification of
data. The well-known point-of-view dimension con-
sists of external, conceptual, and internal schemas;
and the orthogonal intension-extension dimension con-
sists of the data model, data dictionary, and appli-
cation schemas, and the application data.

o The DMCS is a "core DBMS" supporting and enforcing
the two-dimensional data classification. The DMCS
supports all essential DBMS functions.

o The i-DL is the standard interface between any DMCS
and the OS.

o The DL is the standard interface to the services of-
fered by the DMCS.

o A variety of Data Management Tools is provided. New
tools may be added without affecting existing pro-
ducts based on the standard DL.

o The DMCS is the core of a possibly multi-data-model
DBMS. Multiple data models may be built on the DMCS
by adding Data Management Tools.

o The basic components of a dynamic data dictionary
system are included in the DMCS. The Data Management
Tools may include a user-oriented interface to the
data dictionary system.

o Change and evolution of the conceptual schemas, in-
cluding that of the data dictionary, are supported.

o Current standardization efforts on the relational
data model, the network data model and the Informa-
tion Resource Dictionary System are compatible with
the reference model.

o The DL and the i-DL are potential standard products,
not simply standard ideas.

-58 -

The RM itself is not a proposal for a standard, but it
is a basis for planning future standards effort

.

5.1 Recommendation for DL Standardization

The recommended approach is first to develop specifica-
tions for DMCS functionality. The DMCS functionality need
not include high-level interfaces which will be provided by
the Data Management Tools. If the DMCS functionality could
be provided by a subset of NDL or SQL, then that subset
could be adopted as the DL standard. If not, then the
specifications could be used to develop a new standard for
the DL interface.

5.2 Recommendation for i-DL Standardization

The specifications for the functionality of the DMCS
should also determine the services required by the DMCS from
the operating system, assuming that the DMCS and OS func-
tions can be clearly separated. A standard for the i-DL in-
terface can then be developed.

- 59 -

6 . REFERENCES

[ANSI78

]

[BACH82

]

[BRAN84

3

[BCS 82]

[CCA 803

[CCA82a]

[CCA82b]

[CCA82c]

[CCA84a]

[CCA84b]

ANSI /X3/ SPARC Study Group, Database Management
Systems, "Framework Report on Database Management
Systems," AFIPS Press, Montvale, NJ, 1978. (Also
published as Tsichritzis, D. and Klug, A. (Eds.),
"The ANSI/X3/SPARC DBMS Framework," Information
Systems . Vol 3, No. 3, 1978.)

Bachman, C.W. and Ross, R.G., "Toward a More Com-
plete Reference Model of Computer-Based Informa-
tion Systems," Computers and Standards. Vol 1, No.
1, January 1982, pp. 35-48.

Branch, D. and Peeters, E. (Eds.), "A Survey of
DBMS-Related Standardization Activities," ISO/TC
97/SC 5/WG 5, Document N140, April 1984.

Meyer, K.H. and Morse, C.C. (Eds.), "British Com-
puter Society, Data Dictionary Systems Working
Party, Journal of Development, Current to Summer
1982," 105 pp. (ISO/TC 97/SC 5/WG 5 Document N72,
February 1983).

Computer Corporation of America, "A Component Ar-
chitecture for Database Management Systems," NBS-
GCR-8 1-340, June 1980.

Computer Corporation of America, "An Architecture
for Database Management Standards," National
Bureau of Standards, Special Publication 500-86,
January 1982, 46 pp. , Washington, DC.

Computer Corporation of America, "A Family of Data
Model Specifications for DBMS Standards," NBS-
GCR-82-419 , May 1982.

Computer Corporation of America, "CODASYL Query
Language Flat (CQLF) Specifications," NBS-GCR-82-
415, December 1982.

Computer Corporation of America, "Relational Query
Language Flat (RQLF) Specifications," NBS-GCR-83-
454, March 1984.

Computer Corporation of America, "Tree Query
Language Flat (TQLF) Specifications," NBS-GCR-83-
455, March 1984.

-60 -

[CCA84c] Computer Corporation of America, "Network Query
Language Flat (NQLF) Specifications ,

" NBS-GCR-83-
456, March 1984.

[CCA84d] Computer Corporation of America, "Logical Database
Processor Interface Specifications," NBS-GCR-84-
461, March 1984.

[CCA84e

]

Computer Corporation of America, "Physical Data-
base Processor Preliminary Interface Specifica-
tions," NBS-GCR-84-462 , March 1984.

[CCA84f

]

Computer Corporation of America, "Distributed Da-
tabase Components in a DBMS Component Architec-
ture," NBS-GCR-84-463 , March 1984.

[CCA84g

]

Computer Corporation of America, "Model-Model Map-
pings and Conversion in a Family of Data Model
Specifications," NBS-GCR-84-464 , March 1984.

[C0DA69] CODASYL Programming Committee, "Database Task
Group Report to the CODASYL Programming Language
Committee," October 1969.

[C0DA73] "CODASYL Data Description Language," Journal of
Development, National Bureau of Standards, Hand-
book 113, June 1973. (Available from U.S. Govern-
ment Printing Office, Washington, DC.)

[C0DA78

]

"CODASYL Data Description Language" Journal of
Development, Material Data Management Branch,
Department of Supply and Services, Ottawa, 1978.

[CULL82

]

Cullinet Software, Inc. , "Cullinet IDMS-DB Refer-
ence Manual," 1982.

[CULL83] Cullinet Software, Inc., "Cullinet Data Dictionary
Network," IDD Release 3.0, IDMS Release 5.7,
IDMS-DC Release 2.0, Wall Chart, Revision 1.0, May
1983.

[DATE82

]

Date , c . J .

,

An ifitroduQtion to Database Systems

.

Third Edition, Addison-Wesley Publishing Company.
Reading, MA, 1982, 574 pp.

[DAFT82] The Database Architectural Framework Task Group.
"An Architectural Framework for Database Standard
ization," Draft Report to DBSSG , July 1982.

-61 -

[DIEL84]

[F0LT81

]

[GLIG84]

[GRAY78

]

[GRIE82]

[H0TA77

]

[HOTA843

[ISO 84]

[JEFF83]

[KANG83]

[MARK83]

Diel, H. et . al., "Data Management Facilities of
an Operating System Kernel," ACM SIGMQD RgfiQXd,
Vol 14, No. 2, June 1984, pp. 58-79.

Folts, H.C., "Coming of Age: A Long-awaited Stan-
dard for Heterogeneous Nets," Data Communications

.

January 1981.

Gligor, V. and Luckenbaugh, G. , "Interconnecting
Heterogeneous Database Management Systems," Com-
putgr, Vol 17, No. 1, January 1984, pp. 33-43.

Gray, J.N. , "Notes on Database Operating Systems,"
RJ2188(30001) , 1978, IBM Research. Laboratory, San
Jose, CA.

Griethuysen, J.J. van (Ed.), "Concepts and Termi-
nology for the Conceptual Schema and the Informa-
tion Base," ISO/TC 97/SC 21 Document N197. (Also
ISO/TC 97/SC 5/WG 3, Document N695 , March 1982.)

Hotaka, R. and Tsubaki, M. , "Self-Descriptive Re-
lational Database," Proceedings . Third Interna-
tional Conference on Very Large Databases. October
1977, pp. 415-426, IEEE Computer Society, Long
Beach, CA.

Hotaka, R. , "The Reference Model (Chapter 4),"
ISO/TC 97/SC 5/WG 5, Document N155, June 1984, 11

pp.

International Organization for Standardization,
"Information Processing Systems - Open Systems In-
terconnection - Basic Reference Model," ISO 7498,
First Edition — 1984-10-15, 40 pp.

Jefferson, D. , "Reference Model Priorities and De-
finition," Note for ISO/TC 97/SC 5/WG 5, Document
N106, September 1983.

Kangassalo, H. , "On the Selection of the Approach
for the Development of the Reference Model for
DBMS Standards," ISO/TC 97/SC 5/WG 5 Document
N104 , 1983.

Mark, L. and Roussopoulos , N. , "Integration of
Data, Schema and Meta-Schema in the Context of
Self-Documenting Data Models," in C. G. Davis, et
al . (Eds .)

,

Entity-Relationship Approach to
Software Engineering

.
pp. 585-602, Elsevier Sci-

ence Publishers B.V., Amsterdam.

-62 -

[MARK84]

[0LLE83

]

[RITC74]

[R0US83

]

[R0US84

]

CSMIT81]

[ST0N81

]

[ST0N83

]

[UNIV81

]

[X3H284]

[X3H285

]

Mark, L. and Roussopoulos , N. ,
"Fall and Rise of

an ANSI/SPARC DBMS Framework," Working Note for
the Database Architecture Framework Task Group of
the ANSI /X3/ SPARC Database System Study Group,
March 20, 1984, 19 pp.

Olle, T.W. , "DBMS Standardisation - 1979 to 1983,"
Comput ers and Standards . Vol 2, No. 2, 1983, pp.
119-126.

Ritchie, D. and Thompson, K. ,
"The UNIX Time-

sharing System," Communications of the ACM. Vol
17, No. 7, July 1974, pp. 365-375.

Roussopoulos, N. and Mark, L. , "A Self-Describing
Meta-Schema for the RM/T Data Model," IEEE
Workshop on Languages for Automation, IEEE Comput-
er Society Press, 1983.

Roussopoulos, N. and Mark, L. , "A Framework for
Self-Describing and Self-Documenting Database Sys-
tems ,

" , in Proceedings Trends and Applications
1984, Making Database Work, pp. 107-116, IEEE Com-
puter Society Press, Silver Spring, MD, 1984.

Smith, J. et al., "Multibase - Integrating Hetero-
geneous Distributed Database Systems ,

" AFIPS
Conference Proceedings, NCC 1981, pp. 487-499.

Stonebraker, M. , "Operating System Support for Da-
tabase Management," Communications of the ACM, Vol
24, No. 7, July 1981, pp. 412-418.

Stonebraker, M. et al., "Performance Enhancements
to a Relational Database," ACM Transacti on s on Daz
tabase Systems . Vol 8, No. 2, June 1983, pp. 167-
185.

Sperry UNIVAC, "Data Management System, DMS 1100
Level 8R3," System Support Functions, Data Ad-
ministrator Reference, 1981.

ANSI X3H2 (Database), Database Language NDL. ANSI
dpANS X3.133-198x, ISO DP 8907, August 1984, Amer
ican National Standards Institute, New York.

ANSI X3H2 (Database), Database Language SQL. ansi
dpANS X3.xxx-198x, March 1985, American National
Standards Institute, New York.

-63 -

[X3H485

]

ansi X3H4, (Draft Proposed) AEerican National
Standard Information Resource Dictionary System:
Parts 1, 2, 3, and 4, American National Standards
Institute, New York, 1985.

APPENDIX

-65 -

7 . GLOSSARY

Some of the terms used in this report are found
throughout the database literature, occasionally with con-
flicting meanings. The purpose of this appendix is to give
short and informal definitions of the concepts and terms as
they are used in this report

.

Selected terms used in the context of the ANS I /SPARC fuame-
WOEk are

:

Data Management: the functions of storing, retrieving,
and modifying data.

Conceptual schema: a description of all relevant gen-
eral static and dynamic aspects of the universe of
discourse

.

External schema : a description of all or part of the
information in a conceptual schema in a form convenient
to a particular user or application.

Internal schema: a description of the data stored in a
database and how that data is stored.

Data model: a description of the contents, operations,
and constraints of a database.

Data definition language (DDL): a language suitable for
use in defining a conceptual or an external schema.

Data manipulation language (DML) : a language suitable
for use in accessing and modifying the contents of a
database

.

Data storage definitien language (DSDL) : a language
suitable for use in defining an internal schema.

Selected terms used in the context of a reference model are

:

Reference model : a conceptual framework whose purpose

-66 -

is to divide standardization work into manageable
pieces and to show at a general level how these pieces
are related with each other.

QSI Reference Model : a reference model that represents
interprocess communication in a manner suitable for the
coordination and development of standards for the in-
terconnection of systems. The model consists of seven
layers: the application, presentation, session, tran-
sport, network, data link, and physical layers.

DBMS Reference Model : a reference model that represents
data management activities in a manner suitable for the
coordination and development of standards for database
management systems

.

Selected terms used in the context of DBMS environment are

:

System : a collection of intercommunicating processes.

Interface : a language that enables two or more
processes to communicate one with another.

Boundary : a collection of all interfaces for a given
process

.

User: a person or group of persons who require an in-
terface to the database.

End-user: a user who has a need for data processing but
need not have data processing expertise.

Data Administrator (DA) : the user responsible for the
management of the information resources (automated or
non-automated) at a non-technical level. The DA is
concerned with such matters as policies and arbitration
among user groups.

Database Administrator (DBA) : the user responsible for
the technical management of the automated portion of
the information resources. The DBA is concerned with

-67 -

physical storage and access structures, security and
privacy capabilities, etc.

Selected terms used in the context of existing DBMS func-
tions are

:

Authorization control : the procedures established for
defining and controlling a user's right to access or to
modify data in the database.

Concurrency central: the procedures established for al-
lowing multiple processes to simultaneously access a
database on a non-interfering basis.

Database integrity control : the procedures established
for the purpose of ensuring the correctness (integrity)
of the database in accordance with the rules provided
as part of the definition languages supported by the
DBMS

.

Performance control : the procedures and practice
designed to enable optimal performance of the DBMS.

Physical Access : the procedures defined for the input
and output of data between the DBMS and the physical
storage media.

Selected terms used in the context of Data Dictionary System
are

:

Data Dictionary System (DPS) : a computer software sys-
tem used to record, store, protect, and analyze
descriptions of an organization's information
resources, including data and programs.

Meta data: data about data, e.g., the data in a schema.

Meta data management: the functions of storing, re-
trieving, and modifying meta data.

-68 -

Passive DPS : a DDS that interacts only through a human
interface

.

£eiiye DDS : a DDS that provides data definitions at
compile time.

Dynamic DDS: a DDS that provides data definitions at
execution time.

Selected terms used in the context of Distributed DBMS are

:

Distributed DBMS: a cooperative system consisting of a
collection of individual centralized DBMSs. Each DBMS
exists on a separate computer, has a communications fa-
cility that allows it to communicate with other DBMSs
in the network, and has additional features that en-
force a strategy for data sharing among the DBMSs in
the distributed environment.

Heterogeneous DBMS : a distributed DBMS whose nodes may
have dissimilar data models or DBMSs.

Homogeneous DBMS: a distributed DBMS whose nodes have
only one data model and DBMS.

Fully replicated data : pertaining to distributed DBMSs
in which all data items are physically present at each
node

.

Part iti oned data : pertaining to distributed DBMSs in
which each data item is physically present at one and
only one node

.

Partially replicated data: pertaining to distributed
DBMSs in which a data item may exist at any number of
nodes of the system.

Selected terms used in the context of DBMS tools are

:

Fourth Generation Language : a language suitable for *

-69 -

in the development of applications without coding in a
traditional programming language such as COBOL or FOR-
TRAN, but through the mechanism of an interactive di-
alogue .

Applicat ion generator ; an interpretive system that is
molded to a specific environment. A user of the system
enters a specification of the application desired and
the system responds by interpreting the specification
and performing the desired functions.

Program generator : software that produces a program in
a high level language by interpreting the user's
specification.

Database design: the process of developing a database
structure from user requirements.

ZQ£m£-G£i£fit£d interface : communication through forms
which are filled in by the system or by the user.

Selected terms used in the context of the proposed Reference
Model are

:

DMCS data model: the data model that is capable of sup-
porting the established data models, such as the rela-
tional, the entity-relationship, the network, and the
object-role model.

Data model schema: a schema that describes and controls
operations in the class of schemas which can be defined
by the data model.

Sel f-describing data model schema : a schema defined in
terms of the data model it describes.

Point-of-view dimension : a technique for describing
data at three levels consisting of an internal schema,
a conceptual schema, and a set of external schemas.

Intension and extension: defined in conjunction with

-70 -

one another. The intension of a data object is a
description or representation of that object. The
corresponding extension is an instance of the data so
described.

Intension-extension dimension : a technique for describ-
ing data at four levels, consisting of the data model
description, the data dictionary description, the ap-
plication data description, and the application data.
Each is the intension of the following level and the
extension of the previous level. The data model
description is part of its own extension.

Data Mapping Control System (DMCS) : a software com-
ponent that is a core DBMS that provides both data
manipulation and data description services.

Data language (DL) : the interface to the DMCS which
provides the data manipulation language for the DMCS
data model. The DL provides both data and meta data
management services

.

Data Management Tools (DMT) : software components which
use the DL as interfaces to the DMCS.

Internal Data Language (i-DL) : the language through
which all data is passed between the DMCS and the
operating system supporting the DMCS. Data and meta
data are not distinguished by the i-DL.

-71 -

NBS-114A (rev. 2 *80)

U.S. DEPT. OF COMM. 3. Publication Date

May 1985
BIBLIOGRAPHIC DATA
SHEET (See Instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR-85/3173

2. Performinf Organ. Report No.

4.

TITLE AND SUBTITLE

Reference Model for DBMS Standardization5.

AUTHOR(S)

David K. Jefferson and Elizabeth N. Fong (Editors)

6.

PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)
10.

SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This report proposes a Reference Model (RM) for database management system (DBMS)

standardization. A Reference Model is a conceptual framework whose purpose is to
divide standardization work into manageable pieces and to show at a general level

how these pieces are related with each other. The proposed RM comprises a Data
Mapping Control System (DMCS) that retrieves and stores application data,
application schemas, and data dictionary schemas. This DMCS is bounded by two
interfaces: the Data Language (DL) interface which defines the services offered
by the DMCS to various Data Management Tools (DMT), and the internal Data
Language (i-DL) interface which defines the services required by the DMCS from
the host operating system. This report suggests two candidates for standardization:
the DL and the i-DL.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

ANSI/SPARC; data description; data dictionary; database management system; meta
data; schema; standards; reference model.

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

[XU Unlimited

Q31 For Official Distribution. Do Not Release to NTIS

1 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
78

15. Price20402.

[^] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

$11.50
USCOMM-DC 6043-P80

